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TECHNICAL NOTE NO. 1681

CRITTICAL, SHEAR STRESS OF AN INFINITELY
LONG FLATE IN THE PLASTTIC REGION

By Elbridge Z. Stowell
SUMMARY

The plasticity reduction factor in the formula for the buckling
stress of a long plate under uniform shear has been computed from the
properties of the stress—strain curve for the material. Some limited
tests on the shear buckling of 24S-0 aluminum-alloy plates in the
plastic reglon tend to confirm the value of the reduction factor
predicted by the theory. Restraint against rotation along the edges
of the plate has little or no effect upon the value of the reduction
factor according to theoretical calculation.

INTRODUCTION

The problem of computing the critical shear stress for an infinitely
long plate with edges elastically restrained against rotation was solved
for the elastic stress range in reference 1. The theory of reference 1
is no longer applicable, however, in cases where buckling occurs beyond
the elastic range; in such cases, the theory must be modifled to allow for
curvature of the stress—strain curve. The problem consists in the compu—
tation of the plasticity reduction factor 1 1In terms of the properties
of the stress—strain curve for the material.

The general equations for the buckling of a thin plate under combined
compression and shear in the plane of the plate were derived in reference 2.
Upon the assumption that the plate remains in the plastlic state during
buckling, the differential equation of equilibrium of the plate was derived,
together with the corresponding expressions for the variations in emergy at
buckling. These general expressions were then applied to the case of a
plate in which one of the compressive forces and the shear force were zero,
that is, to a plate under simple campression.

The ssme general expressions may also be applied to the case of a
plate under pure shear in the plane of the plate by setting both com—
pressive forces equal to zero. This application has been mads in the
present paper.
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RESULTS

Theoretical results.— The plate is assumed to be infinitely long
with side edges elastlcally restrained against rotation. The applied
shear stress is assumed to be uniformly distributed and, as in
reference 2, no unloading of the plate is assumed to occur during
buckling. By virtue of these assumptions, the plate remains in the
plastic state during buckling and the relations developed in reference 2

apply.

The procedure followed is to employ the same deflection surface in
the energy expressions for the plastic case that was used in reference 1
for the elastic case. From the resulting expressions the approximate
value of the critical shear stress in the plastic reglon is computed.
The expression for the critical shear stress in such a case is

- ﬂakgEt?
12 — p?)p?

in which

T critical shear stress

kg coefficient depending upon conditions of edge restraint
and shape of plate

t thickness of plate

b width of plate

E Young's modulus

K Poisson's ratio

U\ coefficient which allows for reduction In ghear gtress in

plastic range

The value of the wave length required to mske the critical shear stress
a minimm is found and is substituted in the expression for the critical
shear stress, which is then known in terms of the angle of the waves, the
magnitude of the elastic restraint, and the plasticity coefficients.
Division of thls expression for the critical shear stress by the corre—
sponding spproximste expression in the elastic range gives the value of
the coeffiélent 17 to a clogser approximation than either of the indi—
viduel critical stresses.

The coefficient 1 1s given formaslly in the appendix as a function
of the angle of the waves ¢, the magnitude of the elastic restralnt e,



and the plastlcity coefficlents Eg/E and C3. The resulting equation is

Eg sin 2 2 \J£1(e) \/1 - gin22g + 2[1 + 2 sing — (1 - C3) ooaaﬁ]fg(e)
" E ein of 2\[£1(e) + 2(1 + 2 sin2dy)fale)
where
E gecant modulus of material

"8

£1(6), £o(e) functions of elastic restraint ¢

Cs plasticlty coefficlent
%o wave angle in elastic range
— C03)fole
¢ w L cog—l (3 3) 2( )
2 fl(E)

+ (3 + cg)rale)

o - = s

The angle of the waves ¢ 1s that angle which will meke the critical shear stress a
minimmm, As soon asg the magnitude of the elastloc restraint 18 melected, the angle of
the waves, and therefore n, may be computed for any stress.

Computations of 17 were made for a plate of 24S-T aluminum alloy in the ceses where
the edges of the plate were simply supported and clamped. The procedures used are glven

in detail in the gppendix. The calculations with both edge conditions resulted in

E
subatantlially the same curve, shown in figure 1. Curves of 1 = Ef' and n = i? as

obtained for compression in reference 2 are included for camparison.

(1)
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Experimental check.— The critical shear stress of eight long
plates of 24S-0 aluminum alloy has been measured in the plastic
region by Gerard (reference 3). An attempt was made to secure a
clamped condition along the edges and buckling was determined by the
difference in strain on opposite sides of the sheet as measured with
electrical gages. Gerard's data are represented by the test points
in figure 2. The solid—line curve of figure 2 gives the theoretical
values of 1 as computed by equation (1) from the axial stress—
strain curve supplied by Gerard for 24S-0 aluminum alloy in reference 3.
This theoretical curve confirms the trend of the experimental points in
a satisfactory menner, although it lies in the upper part of the scatter
band.

In reference 3 Gerard suggested that the shear secant modulus be
used as the effective modulus for a long plate under shear. Gerard's
assumption is, from equation (2) of reference 3, .

G
_Gg
MT=7

where the G's refer to the slope of a shear stress—strain curve
derived from the axlal stress—strain curve. The dash—line curve in
figure 2, which was computed from figure 8 of reference 3, shows the
value of 7 that results from this suggestion. The agreement with
the solid—line curve, which represents the values of 1 computed from
the theory of the present paper, is seen to be fair.

The necessary conditions for use of the shear secant modulus,
however, should be exsmined further. In the appendix, equation (1)
18 shown to reduce to the form .

1 = Constent -E-:Eﬁ

if C3 1is constant. For Gerard's curve for 24S-0 aluminum alloy the
requirement for a constant C3 is closely fulfilled. When the value

of 1 1is computed from equation (1), it is found that

This relation is plotted as the solid line in figure 2. Results of
the calculatlion are also given In a more familiar form in figure 3.

Caution should be employed in generalizing the use of the ghear
secant modulus to materials, such as 24S-T aluminum alloy, for which
C3 is not a constant in the plastic range. The upper curve in
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figure 1 represents Eg/E for 24S-T aluminum alloy and therefore
describes the axlal stress—strain curve for that material. The center
curve, which represents 1, cannot be obtained fram the upper curve by
multiplying the ordinates by a constant factor throughout the plastic
range; therefore 1 Ffor this materlel is not the shear secant modulus.

CORCLUSIONS

The theory of plastic buckling previously reported has been applied
to the determination of the plasticity reduction factor in the formula
for the buckling stress of a long plate under uniform ghear from the
properties of the stress—strain curve for the material. Some limited
data on the shear buckling of 24S—0 gliminum-alloy plates in the plastic
reglon tend to confirm the value of the reduction factor predicted by
the theory. The theory indicates that restraint againgt rotation along
the edges of the plate has little or no effect on the value of the
reduction factor.

Langley Aeronauticel Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., May 2k, 1948
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APPENDTX
ANATYSTS

General theory.-— Refersnce 2 shows that for a plate under shear
alone the work T dome on the plate, expressed in a Cartesian (x', y')
system, 1s

2 (Bow o
T = T1h | 5 [_LE,—&T,—GI' dy? (2)
2 2
where
T applied shear stress
W deflection of plate at (x!, y')
A half-wave length

The expression for the strain energy in the plate Vy, from
reference 2, is

' b A
2 [2 2 2 2
vi oD 22y o (a%) 2% 22w ' o
1 E‘/:,R f__)l <Bx'2> R ox'dy? +8x’2ay'2 * ay,a ax’ dy
2 T2
(3)
where
_1,1%
3272 E,
_ 358
Dt =3
Eg tangent modulus of material

If, in addition, the plate has equal elastic restraints ¢ against
rotation along the side edges, the strain energy in these restraints Vo
is, from reference 2,
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Iet a more sultable oblique coordinate system be defined by

x=x'+y' tan ¢

as in reference 1. (See fig. L.)

Then T, Vi, and V, in the new system are

N [%%+(§§>2 sin¢] dx dy
2

vl=20]c:z);¢ \/_‘_%]; [% [coi2¢—2(1—03) sin2¢]< )

+ﬁ<gy—2% %, [1 + 4 tan®g — (1—03)](%2

+[l+2tan2¢ (1-03)]:22@2_

cos @ Oxdy | 3x2

+ h tan ¢ aew [Bzw Z:W (l —_ 03) ﬁ cos ¢J dx dy

(1)

(5)

(6)

(N
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A
__Dpe  [? |[ou, 2 dw . dw 5 .
v2—2b0052¢ Y [Byfax sin ¢:|y='l;_1+B;+axSin ¢]y=_1)2l dx (8)
2

where

b

b1 = 558 g

A comparison with the corresponding formulas in appendix B of reference 1
will show that the two groups are identical if Poisson's ratio is taken
as 0.5 and if 03 = 1; that 1s, if only the elastic range is considered.

As In reference 1, the assumed deflection -surface is

W = Wy [lféﬁ. 'b]2_2_ %) + (l + %) cos %:I cos —’%

in which the half—wave length A willl be adJusted to make the critical
stress a minimum. Substituting this deflection surface into
expressions (6), (7), and (8) and performing the indicated integrations
gives

2byt sin

T o >N

RS hbl;.rhc;s 3 (%)Q[Zi@ —20 -5 Bm%]L : @_"M—— _9i_¢>2

A

1+ 2 8in?f — (L — C3) cos®f -

cos®g

2 _ xDler

VE = W
2b13 cos3¢

o}
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where
2
_(n= . L _ 2)\2 L _ 1
L_<120+8 nE)G +<2 ?rl}?)e“ka
M=<}-—l)€2+ }'-he*‘l
8 2 2 T2 2
= (5 - 2 - 1
! <2u fz)s ¥ @ nE)G T2

Setting up the equality T =Vy + V,, which holds at buckling, and
solving for the critical shear stresgs T gives

. M
2
_ 1 _.'L> —r —-C in R
T g 4\ A [0052525 2(1 - C3) ® 2¢] * (‘bl cos ¢)2
A
2¢
+21+2sin2¢—(1—-03)0052¢§_+ 72 72D!?
cos2ff L (’bl cos ¢>2 "blat
— L
w2
or, replacing b; cos § by b, and writing Lo £, (¢)

and %: £o(e) ylelds

a8

'r-: (1'%)2 [col — 2(1 - C3) s1n2¢] + %SZ—) cos®f

A

+ 2 I:l + 2 sin?g — (1 - c3> cos%ﬂ fole) %5 (10)
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In the elastic range @ = 1) this expression reduces to the carresponding
formula in reference 1.

The half-wave length A and the wave angle ¢ will adjust themselves
t0 make T & minimm; that is,

ot
2R

which gives
fl(e) c052¢
¢ - R
V2 -5 sl
from which
Tmin = S3p 2¢‘|:2\/fl(e \/l— sin22¢
+ 2 [1 + 2 gin’f — (1 - 03) cos2¢] £o(e) % (12)
The angle ¢ i1s found from the relation
?I%%Q )
which gives
cos 2¢ = B ~ %) *2(e) (13)

2\/ £7(e)




The velue of @ 1 thus fixed as soon as the restreint ig chosen end the value of Ei/E, ia

assumed. This value of ¢ 1s the one to bo used in equation (12) for camputation of the
minimm critlical shear stresa Tm:l_n‘

TEOT "ON NI VOVN

In the elastic range, the corresponding minimm ecritical shear stress (To)min is obtained
by putting C3 =1 end D' =D = ]-3%3- in equation (12): '

(To)min = _3_15155 [exffl(e) + 2 (1 + 2 Bin2¢o) fe(e)] ;’% (14)

vhere the subscript O signifies that the quantity is In the elastic range. Thus, fram
squation (13),

fole)

\’fl(e) + 2fp(e)

The value of 1n ie the ratio of the critical shear stress Tpi, to the oritical shear
gtress (TO)mj_n that would be obtalned if the material were wholly elastic; thus

(15)

cos 20y =

E gin 2¢, 2\/£1(e) \/ - Bm22¢+2EI.+EsmE¢ (1—03) cosESJ]fE(e)
E gin 2¢

2\ry(e) + ECL + 2 sin2¢o)f2(e)

The value of 7 as a functlon of atress’will now be considersd for the two extrems
cases of gimply supported and clamped edges:
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12
(a) For the case of simply supported edges,
£1(e) = £p(€) =1
=1
cos 2¢O 3
sin 20, = 0.943
s1n°f; = 0.333
cos 2¢ = S 3-°3
+ 3 + C3
Vl —-1;2593 sin®2g
and ]
1-C o
n=§§o.91,_3 2\/1———2—3sin2¢+2[1+251n2¢—(1—03) 0052¢]
E sin 2¢ 5.33 :

This value of 1 1s plotted against stress in figure 1 for 24S-T aluminum
alloy.

(b) For the case of clamped. edges,

€ =
fl(t:') = 5-111'
fe(e) =1.24

cos 2¢O = 0.26

sin®@y = 0.37
1.24(3 — C3)

cos 2§

5.53 + 1.24(3 + Cg)
\[1 ~ 1273 sy
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and

1~C
3
-q=.E_ﬂo 6 k.53 l———g—sin22¢+2.’+8 [l+281112¢—-(1—c3) c032¢]
E sin 27 8.5%

This value of 1 18 nearly identical numerically with the value from
case (a) and 1s represented by the same curve in figure 1.

Conditions under which Gerard's shear secant modulus applies.—
Equation (1) glves the gemeral formula for 1, which involves,
besides Eg/E, the following gquantities:

fl(e) Functions only of restraint

f2(€) - coefficlient ¢

%o Angle of waves on assumption of
elasticity (by equation (15))
depends only on €

¢ Angle of waves in plastic range
(by equation (13)) depends on ¢
and plasticity coefficient C3

C3 Plasticity coefficilent

The magnitude of the restraint coefficient € is considered to be
part of the data furnished with the problem. Thus, f£y(€) and fo(e)

are known constants; the angle ¢O is therefore also a known constant.
If, in addition to these quantities entering into equation (1), the
plasticity coefficlent C3 should also be a constant, equation (1)
would reduce to the form

Egy

1 = Constant T

Gerard's assumption is, fram equation (2) of reference 3,

G
1=
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where the G!'s refer to the slope of a shear stress—strain curve derived
from the axial stress—strain curve.

=

-t and therefore

The plasticity coefficient C3 1is defined as %-J,
g8

el o

the condition for constancy of C3 is that

Ey = XBy
or

doj _ x91

dey o3

where X 1s some constant. The relation o4 = Kbix, where X 18 a

constant, satisfies this requirement. ¥For Gerard’s curve for 24S—0 aluminum
alloy, X is approximately 0.28 over the plastic range, and the requirement
for a constant C3 1s closely fulfilled. When the value of 17 is computed

E
from equation (1) it is found that 7 = 0.89 —Eﬂ. This relation is plotted
as the solid line in figures 2 and 3.
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Figure 2.— Values of 7) for a long plate of

24S-0 aluminum alloy under uniform
shear stress.
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Figure 4.— Oblique coordinate system.
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